1/12000

WICHITA STATE UNIVERSITY MECHANICAL ENGINEERING DEPARTMENT

DESIGN OF MACHINERY ME 339 – SPRING 2000

INSTRUCTOR:

Bassam Alshaer

101**3** - Ext. 6383

CLASS TIME:

8:20 - 9:30 a.m., MW, 102 EB

8i15 -9:25a.m. HW

OFFICE HOURS:

Will be announced!

TEXT:

Design of Machinery - An Introduction to the Synthesis and Analysis of Mechanisms and

Machines, R. L. Norton, McGraw-Hill.

REFERENCES

1. Mechanism Design: Analysis and Synthesis (Volume 1), A.G. Erdman and G.N. Sandor, Prentice Hall.

2. Theory of Machines and Mechanisms, J.E. Shigley and J.J. Uicker, McGraw-Hill.

3. Kinematics and Dynamics of Machines, G.H. Martin, 2nd Edition, McGraw-Hill.

GOALS

1. Understand the concepts of kinematics and dynamics in design of machinery.

2. Learn the use of computer-aided engineering as an approach in engineering design.

3. Learn the art of design process with real engineering problems in practice.

LECTURE TOPICS1

Introduction

- Design process
- Degrees of freedom and mobility, Grubler and Kutzbach's equations
- Fourbar linkage, Grashof's law
- Slider-crank mechanism, Watt's and Stephen's sixbar mechanisms
- Kinematic inversions, isomers, linkage transformations
- Practical considerations in design

Position Analysis

- Vector loop closure
- Graphical method
- Analytical methods
- Algebraic constraint equations
- Complex number notation
- Numerical procedures

Computer Software

Programs description, modeling techniques, programs use in design

¹ The topics may not be covered in the order they appear. Additional topics may be covered or some deleted as necessary.

19 2000

Mechanisms Design

- Linkage design/synthesis
- Design of ~nction, path, and motion generators
- Prescribed positions, precision points, and timing
- Cognates, Cayley and Roberts diagrams
- Design of dwell mechanisms
- Analytical methods: Freudensteints equation, Chebychev spacing

Velocity Analysis

- Angular velocity, velocity difference and relative velocity
- Graphical methods: velocity polygons, instantaneous centers
- Analytical methods: linear algebraic velocity equations, numerical procedures
- Computer methods
- Design considerations, small project

Acceleration Analysis

- normal and tangential accelerations
- graphical method: acceleration polygons
- analytical methods: linear algebraic acceleration equations, numerical procedures
- computer methods
- design considerations, small project

• Dynamic Fundamentals

- Newton's laws of motion, d'Alembert principle, energy methods
- Moments of inertia, radius of gyration, radius of percussion

Dynamic Force Analysis

- Kineto-static analysis
- Graphical, analytical, and computer methods
- Balancing

Cam Design

- S V A J diagrams
- Harmonic, Cycloidal, Polynomial
- Practical considerations in design

• Design Projects

- Computer assignments and projects
- Term design projects

GRADING SCHEME

Midterm Exam	30%
Final Exam	30%
Homework	10%
Computer and Design Projects	30%

NOTES:

For the reported work, use only 8 112 x 11 papers on one side. No make-up exam will be given, and no late work is accepted.